
Dronacharya College of Engineering

 Topic Covered in this lecture:

1.Software Characteristics

2. Software Crisis

3. Software Myths

4. Software Application

.

Software Characteristics are:-

(1). Software is developed or engineered, it is not manufactured:--

Unlike hardware, software is logical rather than physical. It has to be
designed well before producing it.

 In spite of availability of many automated software development tools,

it is the skill of the individual, creativity of the developers and proper
management by the project manager that counts for a good software
product.

(2).Software does not "wear out":--

 As time progresses, the hardware components start deteriorating-they
are subjected to environmental maladies such as dust, vibration,
temperature etc. and at some point of time they tend to breakdown.

 The defected components can then be traced and replaced. But,

software is not susceptible to the environmental changes. SDo, it
does not wear out. The software works exactly the same way even
after years it was first developed unless any charges are introduced
to it.

(2).Software does not "wear out":--
 There is a well-known “bath tub curve” in reliability studies for

hardware products. The curve is given in Fig. The shape of the
curve is like “bath tub”; and is known as bath tub curve.

Useful life phase

Burn-in

phase

Wear out

Phase

F
a
il
u
re

in
te

n
si

ty

Time

Hard ware curve

(2).Software does not "wear out":--
 There are three phases for the life of a hardware product.:
 Initial phase is burn-in phase, where failure intensity is high. It is

expected to test the product in the industry before delivery. Due to
testing and fixing faults, failure intensity will come down initially and
may stabilize after certain time.

 The second phase is the useful life phase where failure intensity
is approximately constant and is called useful life of a product. After
few years, again failure intensity will increase due to wearing out of
components. This phase is called wear out phase.

 We do not have this phase for the software as it does not wear
out. The curve for software is given in Fig.

 (Software curve)
 Important point is software becomes reliable overtime instead of

wearing out. It becomes obsolete, if the environment for which it
was developed, changes. Hence software may be retired due to
environmental changes, new requirements, new expectations, etc.

F
a
il
u
re

in
te

n
si

t

y

Time

(3).Most software is custom-built, rather than being assembled
from existing components:--

Most of the engineered products are first designed before they are
manufactured, Designing includes identifying various components for the
product before they are actually assembled. Here several people can work
independently on these components thus making the manufacturing system
highly flexible.

 In software, breading a program into modules is difficult task , since each

module is highly interlinked with other modules. Further, it requires lot of
skill to integrate different modules into one. Now a days the term
component is widely used in software industry where object oriented
system is in use.

 Software has become integral part of most of the fields of human life.
We name a field and we find the usage of software in that field.
Software applications are grouped In to eight areas for convenience
as shown in Fig

 System

software

Real time

software

Embedded

software

Business
software

Personal

computer

software

Artificial

intelligence

software

Web based

software

Engineering

and scientific

software

Software applications

(i) System software: Infrastructure soft-ware come under this category
like compilers, operating systems, editors, drivers, etc. Basically
system software is a collection of programs to provide service to
other programs.

(ii) Real time software: These software are used to monitor, control

and analyze real world events as they occur. An example may be
software required for weather forcasting. Such software will gather
and process the status of temperature, humidity and other
environmental parameters to forcast the weather.

(iii) Embedded software: This type of software is placed in “Read-Only-
Memory (ROM)” of the product and control the various functions of the
product. The product could be an aircraft, automobile, security system,
signaling system, control unit of power plants, etc. The embedded
software handles hardware components and is also termed as intelligent
software.

(iv) Business software: This is the largest application area. The software

designed to process business applications is called business software.
Business software could be payroll, employee management, account
management. It may also be a data warehousing tool which helps us to
take decisions based on available data. Management information system,
enterprise resource planning (ERP) and such other software are popular
examples of business software.

(v) Personal computer software: The software used in personal computers
are covered in this category. Examples are word processors, computer
graphics, multimedia and animating tools, database management,
computer games etc. This is a very upcoming area and many big
organizations are concentrating their effort here due to large customer
base.

(vi) Artificial intelligence software: Artificial Intelligence software makes

use of non-numerical algorithms to solve complex problems that are not
amenable to computation or straight forward analysis [PRESOI].
Examples are expert systems, artificial neural network, signal processing
software etc.

(vii) Web based software: The software related to web applications
come under this category. Examples are CGI, HTML, Java, Perl,
DHTML etc.

(viii) Engineering and scientific software: Scientific and engineering

application software are grouped in this category. Huge computing is
normally required to process data. Examples are CAD/CAM
package, SPSS, MATLAB, Engineering Pro, Circuit analyzers etc.

Software Myths – Management

"We already have a book that is full of standards and procedures for
building software. I provide my people with everything they need to
know?"
 Not used, not up to date, not complete, not focused on quality, time, and

money

"If we get behind, we can add more programmers and catch up"
 Adding people to a late software project makes it later
 Training time, increased communication lines

"If I decide to outsource the software project to a third party, I can just
relax and let that firm build it"
 Software projects need to be controlled and managed

Software Myths – Customer

"A general statement of objectives is sufficient to begin writing
programs – we can fill in the details later"
 unclear statement of objectives spells disaster

"Project requirements continually change, but change can be easily
accommodated because software is flexible"
 Impact of change depends on where and when it occurs in the

software life cycle (requirements analysis, design, code, test)

Software Myths – Practitioner

"Once we write the program and get it to work, our job is done"
 60% to 80% of all effort expended on software occurs after it is

delivered
"Until I get the program running, I have no way of assessing its quality
 Formal technical reviews of requirements analysis documents, design

documents, and source code (more effective than actual testing)
"The only deliverable work product for a successful project is the working

program"
 Software, documentation, test drivers, test results

"Software engineering will make us create huge and unnecessary
documentation and will invariably slow us down"
 Creates quality, not documents; quality reduces rework and provides

software on time and within the budget

It was in late 1960’s
Many software projects failed.
Many software projects late, over budget ,providing unreliable software

that is expensive to maintain.
Many software projects produced software which did not satisfy the

requirements of the customer.
 Complexities of software projects increased as hardware capability

increased.
 Large software system is more difficult and expensive to maintain.
All the attributes of what was called a ‘Software Crisis” . So the term

‘software Engineering’ first introduced at a conference in late 960’s to
discuss the software crisis.

The causes of the software crisis were linked to the overall complexity of
hardware and the software development process. The crisis visible itself in
several ways:

Projects running over-budget.
Projects running over-time.
Software was very inefficient.
Software was of low quality.
Software often did not meet requirements.
Projects were unmanageable and code difficult to maintain.
Software was never delivered.

 Question1-
“The software crisis is aggravated by the progress in
hardware technology?” Explain with examples.

 Question2 –
What is software crisis? Was Y2K a software crisis?

